Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
J Biomater Appl ; : 8853282241248780, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641897

RESUMO

Foam dressing (FD) and micropower vacuum dressing (MVD) have been applied in the treatment of diabetic foot ulcer (DFU). However, research about the mode of action on the efficacy of the two dressings is extremely rare. This study proposed to explore the mechanism involved in diabetic wound healing under FD or MVD treatment. Macroscopical study was performed to evaluate the effectiveness of FD and MVD on wound healing in a rat model of DFU. Morphological analysis in the wound skin tissue was conducted by hematoxylin and eosin staining. Meanwhile, inflammatory cytokines in serum were measured by enzyme linked immunosorbent assay. The protein expression of phosphatidylinositol 3 kinase, protein kinase B and mammalian target of rapamycin (PI3K/AKT/mTOR) and their phosphorylation levels were determined by western blotting. We found that wound healing in rats with DFU was enhanced with the application of FD and MVD. The therapeutic efficacy of FD was superior to MVD. Compared with diabetic foot group, the concentrations of inflammatory cytokines, tumor necrosis factor alpha, interleukin-1ß and interleukin-6, were significantly down-regulated. Besides, the phosphorylation levels of PI3K, AKT and mTOR were up-regulated under FD or MVD treatment. We demonstrated that the treatment of FD and MVD effectively promoted the wound skin healing through activating the PI3K/AKT/mTOR pathway. Our research may provide a new idea for exploring the mode of action of dressing application in healing of DFU.

2.
Biochem Genet ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630357

RESUMO

Respiratory syncytial virus (RSV) is the most common pathogen causing acute lower respiratory tract infection in infants and children. Due to limited knowledge of the pathological and molecular mechanisms of immunodeficiency underlying RSV disease, there is currently a lack of an approved and effective RSV vaccine to combat RSV infections. This study aimed to identify genes associated with immune dysfunction using bioinformatics methods to gain insights into the role of dysregulated immune genes in RSV disease progression, and to predict potential therapeutic drugs by targeting dysregulated immune-related genes. 423 immune-related differential genes (DEIRGs) were filtered from the blood samples of 87 healthy individuals and 170 RSV patients. According to CIBERSORT analysis, the blood of RSV patients showed increased infiltration of various immune cells. Subsequently, ten immune-related hub genes were screened via Protein-Protein Interaction Networks. Six signature immune-related genes (RPS2, RPS5, RPS13, RPS14, RPS18, and RPS4X) as candidate characteristic genes for the diagnostic model were identified by Lasso regression. The AUC value of the ROC curve of the six signature genes was 0.884. This result, intriguingly, suggested that all six immune-related genes with a good internal validation effect were ribosome family genes. Finally, through molecular docking analyses targeting these differential immune genes, ADO and fluperlapine were found to have high stable binding to major proteins of important immune-related genes in nine drug-protein interactions. Overall, the present study screened immune-related genes that are dysregulated in the development of RSV disease to investigate the pathogenesis of RSV infection from the standpoint of immune disorders. Unexpectedly, bioinformatics analysis revealed that ribosome family genes may be involved in the immune dysregulation of RSV disease, and these genes as targets formed the basis for potential drug modification candidates in RSV disease.

3.
Mol Ecol Resour ; : e13950, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567644

RESUMO

Lignin, as an abundant organic carbon, plays a vital role in the global carbon cycle. However, our understanding of the global lignin-degrading microbiome remains elusive. The greatest barrier has been absence of a comprehensive and accurate functional gene database. Here, we first developed a curated functional gene database (LCdb) for metagenomic profiling of lignin degrading microbial consortia. Via the LCdb, we draw a clear picture describing the global biogeography of communities with lignin-degrading potential. They exhibit clear niche differentiation at the levels of taxonomy and functional traits. The terrestrial microbiomes showed the highest diversity, yet the lowest correlations. In particular, there were few correlations between genes involved in aerobic and anaerobic degradation pathways, showing a clear functional redundancy property. In contrast, enhanced correlations, especially closer inter-connections between anaerobic and aerobic groups, were observed in aquatic consortia in response to the lower diversity. Specifically, dypB and dypA, are widespread on Earth, indicating their essential roles in lignin depolymerization. Estuarine and marine consortia featured the laccase and mnsod genes, respectively. Notably, the roles of archaea in lignin degradation were revealed in marine ecosystems. Environmental factors strongly influenced functional traits, but weakly shaped taxonomic groups. Null mode analysis further verified that composition of functional traits was deterministic, while taxonomic composition was highly stochastic, demonstrating that the environment selects functional genes rather than taxonomic groups. Our study not only develops a useful tool to study lignin degrading microbial communities via metagenome sequencing but also advances our understanding of ecological traits of these global microbiomes.

4.
BMC Oral Health ; 24(1): 465, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627713

RESUMO

BACKGROUND: Mechanosensitive ion channel PIEZOs have been widely reported to involve inflammation and pain. This study aimed to clarify expression patterns of PIEZOs and their potential relations to irreversible pulpitis. MATERIALS AND METHODS: Normal pulp tissues (n = 29) from patients with impacted third molars and inflamed pulp tissues (n = 23) from patients with irreversible pulpitis were collected. Pain levels were assessed using a numerical rating scale. PIEZO expressions were measured using real-time PCR and then confirmed using GEO datasets GSE77459, immunoblot, and immunohistochemistry staining. Correlations of PIEZO mRNA expression with inflammatory markers, pain markers, or clinical pain levels were evaluated using Spearman's correlation analysis. Univariate analysis was conducted to analyze PIEZO expressions based on pain description and clinical examinations of cold test, percussion, palpation, and bite test. RESULTS: Compared with normal pulp tissues, mRNA expression levels of PIEZO1 were significantly increased in inflamed pulp tissues, while PIEZO2 was significantly decreased, which was further confirmed in GSE77459 and on a protein and histological level. The positive correlation of the mRNA expression levels between PIEZO1 and inflammatory markers, as well as between PIEZO2 and pain markers, was verified. PIEZO2 expression was also positively correlated with pain levels. Besides, irreversible pulpitis patients who reported continuous pain and who detected a positive response to cold stimulus exhibited a higher expression level of PIEZO2 in the inflamed pulp tissues. By contrast, patients reporting pain duration of more than one week showed a higher expression level of PIEZO1. CONCLUSIONS: This study demonstrated the upregulation of PIEZO1 and the downregulation of PIEZO2 in irreversible pulpitis and revealed the potential relation of PIEZO1 and PIEZO2 to inflammation and pain. These findings suggested that PIEZOs might play critical roles in the progression of irreversible pulpitis and paved the way for further investigations aimed at novel therapies of irreversible pulpitis by targeting PIEZOs.


Assuntos
Pulpite , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Inflamação , Dor , RNA Mensageiro
5.
Trends Biotechnol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594144

RESUMO

Omega fatty acids are important for human health. They are traditionally extracted from animals or plants but can be alternatively produced using oleaginous yeast. Current efforts are producing yeast strains with similar fatty acid distributions and powerful lipogenesis capacity. The next step is to further make the process more competitive.

7.
Phys Rev E ; 109(2-1): 024129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491675

RESUMO

In this article, we find that impurity in a one-dimensional harmonic chain leads to spikes in the phonon transmission. Using the Langevin equations and Green's function method (LEGF), we find the underlying mechanism of spikes, which comes from the fact that the wave energy can be transferred through uniform subchains laid between impurities without loss. Both the position and magnitude of spikes can be analytically obtained. By employing these results, we provide an analytical approach to transmission in the thermodynamic limit, thereby compensating for the limitation of LEGF that are practically confined to finite system size. Finally, we determine an expression for the localization length based on LEGF, demonstrating the equivalence between mass disorder and spatial disorder in low impurity concentration.

8.
Chemosphere ; 355: 141744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522669

RESUMO

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Assuntos
Benzimidazóis , Bismuto , Carbamatos , Carbono , Nanofibras , Compostos de Selênio , Carbono/química , Nanofibras/química , Ecossistema , Água , Técnicas Eletroquímicas/métodos , Eletrodos
9.
BMC Public Health ; 24(1): 723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448849

RESUMO

BACKGROUND: Deep learning (DL), a specialized form of machine learning (ML), is valuable for forecasting survival in various diseases. Its clinical applicability in real-world patients with gastric cancer (GC) has yet to be extensively validated. METHODS: A combined cohort of 11,414 GC patients from the Surveillance, Epidemiology and End Results (SEER) database and 2,846 patients from a Chinese dataset were utilized. The internal validation of different algorithms, including DL model, traditional ML models, and American Joint Committee on Cancer (AJCC) stage model, was conducted by training and testing sets on the SEER database, followed by external validation on the Chinese dataset. The performance of the algorithms was assessed using the area under the receiver operating characteristic curve, decision curve, and calibration curve. RESULTS: DL model demonstrated superior performance in terms of the area under the curve (AUC) at 1, 3, and, 5 years post-surgery across both datasets, surpassing other ML models and AJCC stage model, with AUCs of 0.77, 0.80, and 0.82 in the SEER dataset and 0.77, 0.76, and 0.75 in the Chinese dataset, respectively. Furthermore, decision curve analysis revealed that the DL model yielded greater net gains at 3 years than other ML models and AJCC stage model, and calibration plots at 3 years indicated a favorable level of consistency between the ML and actual observations during external validation. CONCLUSIONS: DL-based model was established to accurately predict the survival rate of postoperative patients with GC.


Assuntos
Aprendizado Profundo , Neoplasias Gástricas , Humanos , Algoritmos , Área Sob a Curva , Povo Asiático , Neoplasias Gástricas/cirurgia , População norte-americana
10.
Chem Sci ; 15(10): 3545-3551, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455003

RESUMO

MnO2 is a desired cathode candidate for aqueous zinc batteries. However, their cycling stability is seriously limited by active material dissolution, and pre-addition of Mn2+ salts in electrolytes is widely required to shift the dissolution equilibrium. Herein, we synthesize a polydopamine (PDA) coated MnO2 composite material (MnO2/PDA) to realize stable cycling in zinc cells without relying on pre-added Mn2+. The functional groups on PDA exhibit strong coordination ability with the Mn active material. It not only confines dissolved species within the cathode during discharge, but also enhances their deposition back to the cathode during charge to retrieve the active material. Thanks to this effect, the cathode achieves 81.1% capacity retention after 2000 cycles at 1 A g-1 in the 1 M ZnSO4 electrolyte, superior to 37.3% with the regular MnO2 cathode. This work presents an effective strategy to realize the stable cycling of manganese oxide cathode materials in aqueous zinc batteries.

11.
Environ Int ; 185: 108579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493736

RESUMO

Environmental regulations aim to reduce pollution and improve air quality and the health of residents. However, there is a lack of research focusing on the health and welfare effects of low-carbon city pilot policies. In this context, this study takes China's low-carbon city pilot policy as an entry point, focuses on the health effects of public environmental governance, and systematically investigates the effects and mechanisms of low-carbon city development on the health of middle-aged and elderly people by applying the difference-in-differences method. The study finds that low-carbon city (LCC) policy significantly improves the physical and mental health of middle-aged and elderly people, and the main transmission mechanism is the reduction in air pollution and improvement in social capital. These results hold following a series of robustness tests. Furthermore, low-carbon city construction can reduce hospitalization and outpatient costs for people over 45 years old by up to 3 % and 15.5 %, respectively. The findings of this study provide useful policy insights for ensuring sustainable improvement in environmental quality and public health.


Assuntos
Poluição do Ar , Conservação dos Recursos Naturais , Idoso , Pessoa de Meia-Idade , Humanos , Política Ambiental , China , Carbono , Cidades , Desenvolvimento Econômico
12.
Int Immunopharmacol ; 130: 111746, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442575

RESUMO

BACKGROUND: In clear cell renal cell carcinoma (ccRCC), the role of Regulatory T cells (Treg cells) as prognostic and immunotherapy response predictors is not fully explored. METHODS: Analyzing renal clear cell carcinoma datasets from TISCH, TCGA, and GEO, we focused on 8 prognostic Treg genes to study patient subtypes in ccRCC. We assessed Treg subtypes in relation to patient prognosis, tumor microenvironment, metabolism. Using Cox regression and principal component analysis, we devised Treg scores for individual patient characterization and explored the molecular role of C1QL1, a critical gene in the Treg model, through in vivo and in vitro studies. RESULTS: Eight Treg-associated prognostic genes were identified, classifying ccRCC patients into cluster A and B. Cluster A patients showed poorer prognosis with distinct clinical and molecular profiles, potentially benefiting more from immunotherapy. Low Treg scores correlated with worse outcomes and clinical progression. Low scores also suggested that patients might respond better to immunotherapy and targeted therapies. In ccRCC, C1QL1 knockdown reduced tumor proliferation and invasion via NF-kb-EMT pathways and decreased Treg cell infiltration, enhancing immune efficacy. CONCLUSIONS: The molecular subtype and Treg score in ccRCC, based on Treg cell marker genes, are crucial in personalizing ccRCC treatment and underscore C1QL1's potential as a tumor biomarker and target for immunotherapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Linfócitos T Reguladores , Transcriptoma , Análise de Sequência de RNA , Neoplasias Renais/genética , Microambiente Tumoral/genética
13.
BMC Oral Health ; 24(1): 360, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515079

RESUMO

BACKGROUND: Entirely impacted mandibular third molar (EIM3M) concerns the pathological external root resorption (ERR) of the adjacent mandibular second molar (M2M) and formation of granulation tissue between two molars. The study aimed to clarify the effect of αENaC, a mechano-sensitive molecule, to explore the mechanical mechanism in this scenario. METHODS: The force EIM3M exerted on M2M was proved by finite element analysis. αENaC expressions were tested by real-time polymerase chain reaction (PCR), immunoblotting and immunofluorescence. Inflammatory and epithelial-mesenchymal transition (EMT)-related molecules expressions were also detected by real-time PCR. The correlation was analyzed by Spearman's correlation analysis, and receiver-operator characteristic (ROC) curve was further exhibited. RESULTS: The force was concentrated in the ERR area. αENaC was upregulated, positively correlated with ERR degree and localized to the fibroblasts in ERR granulation tissues. Moreover, αENaC was respectively and positively associated with elevated TNF-α and N-cadherin in ERR granulation tissues. More importantly, ROC analysis verified αENaC as a novel indication of the incidence of this disease. CONCLUSIONS: Our finding revealed the force from EIM3M causing ERR of M2M, and elucidated the expression and localization of αENaC and its positive correlation with inflammation, EMT and disease severity, suggesting a novel indication in this disease.


Assuntos
Reabsorção da Raiz , Dente Impactado , Humanos , Reabsorção da Raiz/etiologia , Dente Serotino , Tomografia Computadorizada de Feixe Cônico , Dente Molar
14.
J Chem Phys ; 160(10)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482869

RESUMO

The accurate detection and quantification of biological species that are rarely present but potentially devastating is of paramount importance for the life sciences, biosecurity, food safety, and environmental monitoring. Consequently, there has been significant interest in the sensitive and accurate detection of nucleic acids, leveraging both chemical and biological methods. Among these, quantitative polymerase chain reaction (qPCR) is regarded as the gold standard due to its sensitivity and precision in identifying specific nucleic acid targets. Despite the widespread adoption of qPCR for nucleic acid detection, the analysis of qPCR data typically depends on the use of calibrated standard curves and a threshold method to interpret signal measurements. In this study, we use a stochastic simulation to show the limitations of the threshold method due to its assumptions on amplification kinetics. We propose a new approach for the absolute quantification of nucleic acids that overcomes these limitations by reconstructing the efficiency profile across amplification cycles and using cumulative amplification folds to build a standard curve, thus avoiding the constant efficiency assumption. Our method, validated through experiments with nucleic acid amplification in the presence of potent inhibitors, demonstrates improved accuracy in quantifying nucleic acids, avoiding the systematic errors of the threshold method. This innovation enhances the reliability of nucleic acid quantification, especially where traditional methods struggle with kinetic variability.


Assuntos
Ácidos Nucleicos , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes
15.
AJR Am J Roentgenol ; : 1-14, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38323782

RESUMO

BACKGROUND. MRI-based prognostic evaluation in patients with dilated cardiomyopathy (DCM) has historically used markers of late gadolinium enhancement (LGE) and feature tracking (FT)-derived left ventricular global longitudinal strain (LVGLS). Early data indicate that FT-derived left atrial strain (LAS) parameters, including reservoir, conduit, and booster, may also have prognostic roles in such patients. OBJECTIVE. The purpose of our study was to evaluate the prognostic utility of LAS parameters, derived from MRI FT, in patients with ischemic or nonischemic DCM, including in comparison with the traditional parameters of LGE and LVGLS. METHODS. This retrospective study included 811 patients with ischemic or nonischemic DCM (median age, 60 years; 640 men, 171 women) who underwent cardiac MRI at any of five centers. FT-derived LAS parameters and LVGLS were measured using two- and four-chamber cine images. LGE percentage was quantified. Patients were assessed for a composite outcome of all-cause mortality or heart failure hospitalization. Multivariable Cox regression analyses including demographic characteristics, cardiovascular risk factors, medications used, and a wide range of cardiac MRI parameters were performed. Kaplan-Meier analyses with log-rank tests were also performed. RESULTS. A total of 419 patients experienced the composite outcome. Patients who did, versus those who did not, experience the composite outcome had larger LVGLS (-6.7% vs -8.3%, respectively; p < .001) as well as a smaller LAS reservoir (13.3% vs 19.3%, p < .001), LAS conduit (4.7% vs 8.0%, p < .001), and LAS booster (8.1% vs 10.3%, p < .001) but no significant difference in LGE (10.1% vs 11.3%, p = .51). In multivariable Cox regression analyses, significant independent predictors of the composite outcome included LAS reservoir (HR = 0.96, p < .001) and LAS conduit (HR = 0.91, p < .001). LAS booster and LGE were not significant independent predictors in the models. LVGLS was a significant independent predictor only in a model that initially included LAS booster but not the other LAS parameters. In Kaplan-Meier analysis, all three LAS parameters were significantly associated with the composite outcome (p < .001). CONCLUSION. In this multicenter study, LAS reservoir and LAS conduit were significant independent prognostic markers in patients with ischemic or nonischemic DCM, showing greater prognostic utility than the currently applied markers of LVGLS and LGE. CLINICAL IMPACT. FT-derived LAS analysis provides incremental prognostic information in patients with DCM.

16.
Bioconjug Chem ; 35(3): 400-411, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366969

RESUMO

Photodynamic therapy (PDT) is a cancer treatment strategy that utilizes photosensitizers to convert oxygen within tumors into reactive singlet oxygen (1O2) to lyse tumor cells. Nevertheless, pre-existing tumor hypoxia and oxygen consumption during PDT can lead to an insufficient oxygen supply, potentially reducing the photodynamic efficacy. In response to this issue, we have devised a pH-responsive amphiphilic triblock fluorinated polymer (PDP) using copper-mediated RDRP. This polymer, composed of poly(ethylene glycol) methyl ether acrylate, 2-(diethylamino)ethyl methacrylate, and (perfluorooctyl)ethyl acrylate, self-assembles in an aqueous environment. Oxygen, chlorine e6 (Ce6), and doxorubicin (DOX) can be codelivered efficiently by PDP. The incorporation of perfluorocarbon into the formulation enhances the oxygen-carrying capacity of PDP, consequently extending the lifetime of 1O2. This increased lifetime, in turn, amplifies the PDT effect and escalates the cellular cytotoxicity. Compared with PDT alone, PDP@Ce6-DOX-O2 NPs demonstrated significant inhibition of tumor growth. This study proposes a novel strategy for enhancing the efficacy of PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Polímeros de Fluorcarboneto , Oxigênio , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Hipóxia/tratamento farmacológico , Concentração de Íons de Hidrogênio
17.
Environ Sci Pollut Res Int ; 31(13): 20399-20408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374504

RESUMO

Fenoxaprop-p-ethyl (FEN) is an aryloxy phenoxy propionate herbicide that has been widely used in paddy fields. Previous studies have indicated that FEN is highly toxic to aquatic organisms, but little is known about the developmental effects of FEN. This study investigated acute and developmental toxicity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and metabolomic analyses in zebrafish embryos after 96 h of exposure. FEN exhibited high acute toxicity to zebrafish embryos and larvae. Exposure to FEN could reduce heartbeat and hatching rates and increase malformation rates in embryos. Oxidative damage was also caused in embryos. The results of metabolomics analysis showed that 102 differentially abundant metabolites were found in zebrafish embryos in the 0.05 mg/L FEN treatment group, and 60 differentially abundant metabolites were found in the 0.20 mg/L FEN treatment group. These differentially abundant metabolites mainly belonged to 9 metabolic pathways, of which folate pathways and ABC transport protein pathways had the greatest impact. These results suggested that FEN induced high acute and developmental toxicity in zebrafish embryos.


Assuntos
Oxazóis , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Propionatos/metabolismo , Estresse Oxidativo , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
19.
Endocr Connect ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180052

RESUMO

Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM) that contributes to cardiovascular morbidity and mortality. However, the metabolic alterations and specific biomarkers associated with DCM in T2DM remain unclear. In this study, we conducted a comprehensive metabolomic analysis using liquid chromatography-mass spectrometry (LC-MS) to investigate the plasma metabolite profiles of T2DM patients with and without DCM. We identified significant differences in metabolite levels between the groups, highlighting the dysregulation of various metabolic pathways, including starch and sucrose metabolism, steroid hormone biosynthesis, tryptophan metabolism, purine metabolism, and pyrimidine metabolism. Although several metabolites showed altered abundance in DCM, they also shared characteristics of DCM and T2DM rather than specific to DCM. Additionally, through biomarker analyses, we identified potential biomarkers for DCM, such as cytidine triphosphate, 11-ketoetiocholanolone, saccharopine, nervonic acid, and erucic acid. These biomarkers demonstrated distinct patterns and associations with metabolic pathways related to DCM. Our findings provide insights into the metabolic changes associated with DCM in T2DM patients and highlight potential biomarkers for further validation and clinical application. Further research is needed to elucidate the underlying mechanisms and validate the diagnostic and prognostic value of these biomarkers in larger cohorts.

20.
J Agric Food Chem ; 72(6): 3088-3098, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38282297

RESUMO

Punicic acid is a conjugated linolenic acid with various biological activities including antiobesity, antioxidant, anticancer, and anti-inflammatory effects. It is often used as a nutraceutical, dietary additive, and animal feed. Currently, punicic acid is primarily extracted from pomegranate seed oil, but it is restricted due to the extended growth cycle, climatic limitations, and low recovery level. There have also been reports on the chemical synthesis of punicic acid, but it resulted in a mixture of structurally similar isomers, requiring additional purification/separation steps. In this study, a comprehensive strategy for the production of punicic acid in Yarrowia lipolytica was implemented by pushing the supply of linoleic acid precursors in a high-oleic oil strain, expressing multiple copies of the fatty acid conjugase gene from Punica granatum, engineering the acyl-editing pathway to improve the phosphatidylcholine pool, and promoting the assembly of punicic acid in the form of triglycerides. The optimal strain with high oil production capacity and a significantly increased punicic acid ratio accumulated 3072.72 mg/L punicic acid, accounting for 6.19% of total fatty acids in fed-batch fermentation, providing a viable, sustainable, and green approach for punicic acid production to substitute plant extraction and chemical synthesis production.


Assuntos
Lythraceae , Punica granatum , Yarrowia , Animais , Yarrowia/genética , Yarrowia/metabolismo , Óleos de Plantas/metabolismo , Lythraceae/genética , Lythraceae/metabolismo , Ácidos Graxos/metabolismo , Ácidos Linolênicos , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...